Amendment to Rules Committee Print 117-9 Offered by Mr. Gallego of Arizona

Page 1551, after line 14, insert the following:

1	SEC. 13106. SMART WATER INFRASTRUCTURE TECH-
2	NOLOGY.
3	Section 1452(k)(1) of the Safe Drinking Water Act
4	(42 U.S.C. $300j-12(k)(1)$) is amended by adding at the
5	end the following:
6	"(E) Provide assistance, only in the form
7	of a loan, to any community water system for
8	the planning, design, and construction of, and
9	operations training relating to, the following:
10	"(i) Smart water network technologies
11	that—
12	"(I) can identify water losses
13	from conveyance facilities in a non-
14	destructive or disruptive manner, in-
15	cluding through the use of acoustic
16	data collection; and
17	"(II) provide comprehensive data
18	on pipe integrity that documents the
19	presence of leaks or gas pockets and
20	provides information on the extent of

2

1	such leaks or gas pockets, with an em-
2	phasis on pipe barrel, pipe joint, or
3	other pipe features.
4	"(ii) Real-time sensing technologies,
5	including the use of advanced analytics,
6	that detect and alert operators to leakages
7	and pipeline bursts on a real-time basis,
8	including persistent sensor networks capa-
9	ble of measuring—
10	"(I) acoustic signals;
11	"(II) pressure transient; or
12	"(III) water quality.
13	"(iii) Real-time decision support that
14	integrates sources of data about water dis-
15	tribution networks to deliver common oper-
16	ations information relying on data ana-
17	lytics that can improve operational deci-
18	sionmaking, including non-revenue water
19	loss, energy optimization, and water qual-
20	ity improvement.
21	"(iv) Advanced metering infrastruc-
22	ture, including meter data analytics and
23	ratepayer technology to improve end user
24	conservation and in support of disadvan-
25	taged communities.

3

"(v) Resilient water supply projects
that provide real-time monitoring of weath-
er patterns and impacts upon water supply
and flood protection reservoirs and dams
to enhance operations of such reservoirs
and dams, including—
"(I) improved water supply reli-
ability and management;
"(II) protection of natural re-
sources, including fisheries; and
"(III) temperature control.
"(vi) Innovative and alternative water
supply storage projects, including ground-
water recharge, that rely on real-time data
acquisition to support predictive aquifer re-
charge through water reuse and
stormwater management capabilities.".

 \times